CSCE 636 Project: CIFAR Classification using NFNets

Hema Deva Sagar Potala
hpotala@tamu.edu

Abstract

In the assignment 2, as per the instruction given there, we explored typical ResNets.
As we know, one of the most important components that allows ResNets(or any
CNN based model for image classification) to be deeper is Batch normalization.
According to [1], it ensures good signal propagation which allows us to train deeper
networks, without convolutions exploding. However, there are certain caveats with
Batch-Normalization. It breaks the independence between training examples, mem-
ory overhead and also poses difficulty in replicating the trained models on different
hardware. To counter the above disadvantages, I explored NFNet - Normalizer-Free
ResNets, for the project, to free typical ResNets from batch normalization for good.
Not only they make the training faster but according to [2] even the smaller models
made of NFNets match the performance of EfficientNet (one of the SOTA models)
on imagenet. NFNets is still an ongoing research field and I will talk about 2
significant factors that make up any variant of NFNets.

1 NFNets in Brief

Freeing the Normalization: According to [4], in typical ResNets, Batch normalization downscales
the input to each residual block by a factor proportional to the standard deviation of the input signal.
And each residual block increase the variance of the signal by an almost constant factor. Keeping
these two findings in mind, authors in [3], proposes the following modified residual block that mimics
the above 2 findings. That is,
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where z; denotes the input to the It" residual block, f1(.) denotes the residual block function, «
denotes the hyperparameter (recommended value is 0.2) and (; is choosen to be Var(z;). Initializing
the weights of the function f such that Var(f(x)) = Var(x), gives an analytical form to derive 5;. We
achieve initialization that preserves variance through He or Kaiming initialization.

With the above initialization, 3; can be predicted with the following recurrence relation
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Since we normalize the data, Var(x,) = 1. The above mentioned modified residual block, along
with o and 3; will help in good propagation of signal without being exploded.

Recifying activation induced mean shifts: According to [3], it was observed that chang-
ing the residual block form, although helped, did introduced few practical challenges that
arose from the mean shifts seen in hidden activations. To curb this mean shift and ensure
that the variance in the residual branches are preserved (from exploding), scaled weight
standardization, inspired from [5], is proposed by the authors in [3]. The authors suggest that
we re-parameterize the weights of the convolution layers through the training in forward pass as below
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Where 11 and o are calculated across fan-in of the convolution filters. +y is the scaling dependent
on the kind of activation the network uses. For my network I used ReL.U as activations, for which
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v = J0-D (this value is derived in [3])

I designed a small version of NFNets in-corporating the above design choices.

2 Network choices and Design

According to [2], the NFNet residual blocks are designed slightly different from typical resnet
bottleneck. Below picture, (take from [2]) shows a simple schematic of NFNet blocks.

Each of the convolution operation (not shown in the above picture but) is preceded by scaled ReLU
activation. Although the paper [2] recommends to use Squeeze and Excite blocks after the last 1 x 1
convolution for faster training, I ignored them in my network design, since I didn’t intend to train my
network with larger batch size like 4096 and above.

My final network was moderately inspired from the Assignment 2 network. Below is the network
schematic I used for final experimentation and reporting:

Conv 32 x 32, 16

MNFNet Stack - 1
32x32, 64

NFMet Stack - 2
16 x 16, 128

MFMet Stack - 3
8x8, 256

I Pooling I
I Linear I

In each NFNet stack I used 5 NFNet blocks. This decision is mostly guided by the GPU and resource
limitation. On my machine, which have a GPU of RTX 2060, 1 epoch takes 230 seconds to run for
a stack size of 5. Anything above increases the run-time for each epoch to more than 230 seconds
which is not feasible for effective hyper-tuning and experimentation (on my machine). So I present
my results and experimentation observations with this architecture design. Note: For more details on
the network, please refer to Network.py.




3 Data Pre-processing

There are few data pre-processing choices I adopted. Gaussian noise addition, image rotation (upto a
maximum of 15 degrees) and horizontal flip.

The pre-processing function do not perform any processing to the original image 40% of the time.
And does gaussian noise addition, rotation and horizontal flipping each 20% of the time.

4 Experimentation

I started fine-tuning the network on learning rate and batch size. I trained the model on every
hyper-parameter combination for 40 epochs to assess which optimal setting to choose for final full
blown training. Following is the hyper-parameter search space for learning rate and batch size:

learning_rate = [0.001,0.01, 0.1], batch_size = [32, 64, 128, 256]

Below is the validation accuracy at every hyper-parameter combination:

Batch Size | Learning Rate | Validation accuracy (%)
32 0.001 79.88
32 0.01 83.65
32 0.1 10.14
64 0.001 73.54
64 0.01 85.01
64 0.1 10.14
128 0.001 65.76
128 0.01 84.23
128 0.1 10.14

256 0.001 54.54
256 0.01 81.36
256 0.1 10.14

From the above table, the settings marked in green achieved better validation accuracy. So I trained
my final full blown model with those settings, i.e, learning rate = 0.01 and Batch Size = 64 for max
epochs = 200.

Note: I captured the entire code for hyper-tuning under "hypertune" mode (new mode I added to code
apart from train, test, and predict). The command to run this hyper-parameter tuning is mentioned at
the start of the report and also in the README file in code folder.

5 Results

I trained the model with the above optimal settings for 200 epochs and below are the training loss
and validation accuracy plots at 10 epoch intervals.
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The maximum validation accuracy observed is 89.78% and it was seen to be achieved at various
stages. Like at epoch 110, 120 and 200. Test accuracy realized on the public test set with model after
200 epochs is 89.28%. Important observation to note from the above is the improvement starts to
plateau after 120 epochs. One potential way to get more improvement is to probably increase the
model size.

6 Observation and conclusion

* While hyper-tuning, I observed 0.1 learning rate resulted in a very unstable model. Not
exactly sure of the cause but the model didn’t seem to learn there.




» Using He or kaiming initialization is very important for NFNets since they do good job
at preserving the variance of the pre-activations across all the layers of the network. I
experimented with other initialization like Xavier, uniform, etc. but the hidden activations
and gradients, both exploded and prevented the model from learning.

* Also observed that the model’s performance became a plateau after 120 epochs of training.
Increasing the model capacity may help.
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